skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Inducibly degradable polymers present new opportunities to integrate tough hydrogels into a wide range of biomaterials. Rapid and inducible degradation enables fast transition in material properties without sacrificing material integrity prior to removal. In pursuit of bioorthogonal chemical modalities that will enable inducible polymer degradation in biologically relevant environments, enamine N-oxide crosslinkers are developed for double network acrylamide-based polymer/alginate hydrogels. Bioorthogonal dissociation initiated by the application of aqueous diboron solution through several delivery mechanisms effectively lead to polymer degradation. Their degradation by aqueous B2(OH)4 solution results in a fracture energy half-life of <10 min. The biocompatibility of the degradable hydrogels and B2(OH)4 reagent is assessed, and the removability of strongly adhered tough hydrogels on mice skin is evaluated. Thermoresponsive PNiPAAm/Alg hydrogels are fabricated and application of the hydrogels as a chemically inducible degradable intraoral wound dressing is demonstrated. It is demonstrated through in vivo maximum tolerated dose studies that diboron solution administered to mice by oral gavage is well tolerated. Successful integration of enamine N-oxides within the tough double network hydrogels as chemically degradable motifs demonstrates the applicability of enamine N-oxides in the realm of polymer chemistry and highlights the importance of chemically induced bioorthogonal dissociation reactions for materials science. 
    more » « less
    Free, publicly-accessible full text available February 28, 2026
  2. Tree carbon allocation is a dynamic process that depends on the tree’s environment, but we know relatively little about how biotic interactions influence these dynamics. In central Kenya, the loss of vertebrate herbivores and the savanna’s invasion by the ant Pheidole megacephala are disrupting mutualisms between the foundational tree Acacia (Vachellia) drepanolobium and its native ant defenders. Here, we piloted a 13Carbon (C) pulse-labeling method to investigate the influence of these biotic interactions on C allocation to ant partners by adult trees in situ. Trees withstood experimental conditions and took up sufficient labeled 13CO2 for 13C to be detected in various C sinks, including ant mutualists. The δ13C in ants collected shortly after labeling suggested that trees exposed to herbivores allocated relatively more newly assimilated C to native ant defenders. Our results demonstrate the viability of the pulse-labeling method and suggest that C allocation to ant partners depends on the biotic context of the tree, but further investigation with replication is needed to characterize such differences in relation to invasion and herbivore loss. 
    more » « less